Porting Windows exclusive games to Linux is a small step as well, but most developers don’t do it because they cannot justify the additional QA and debugging time required to port them over. Especially since Linux’s market share is small.
The reason Itanium failed was because the architecture was too different from x86 and porting x86 applications over required significant effort and was error prone.
For RISC-V to even get any serious attention from developers, I think they need to have appx 40-50% market share with OEMs alongside ARM. Otherwise, RISC-V will be seen as a niche architecture and developers would avoid porting their applications to it.
My point is that “porting” is not such a big deal if it is just recompile. If you already target Linux with a portable code base ( to support both ARM and amd64 for example ) then the burden of RISC-V is pretty low. Most of the support will be the same between RISC-V and ARM if they target the same Linux distros.
The Linux distros themselves are just a recompile as well and so the entire Open Source ecosystem will be available to RISC-V right away.
It is a very different world from x86 vs Itanium with amd64 added to the mix.
Look at Apple Silicon. Fedora already has a full distribution targeting Apple Silicon Macs. The biggest challenges have been drivers, not the ISA. The more complete the Linux ecosystem is on ARM, the easier it will be to create distros for RISC-V as well.
Porting Windows games to Linux is not a small step. It is massive and introduces a huge support burden. That is much different than just recompiling your already portable and already Linux hosted applications to a new arch.
With games, I actually hope the Win32 API becomes the standard on Linux as well because it is more stable and reduces the support burden on game studios. It may even be ok if they stay x86-64. Games leverage the GPU more than the CPU and so are not as greatly impacted running the CPU under emulation.
It greatly depends on the applications.
Porting Windows exclusive games to Linux is a small step as well, but most developers don’t do it because they cannot justify the additional QA and debugging time required to port them over. Especially since Linux’s market share is small.
The reason Itanium failed was because the architecture was too different from x86 and porting x86 applications over required significant effort and was error prone.
For RISC-V to even get any serious attention from developers, I think they need to have appx 40-50% market share with OEMs alongside ARM. Otherwise, RISC-V will be seen as a niche architecture and developers would avoid porting their applications to it.
We agree.
My point is that “porting” is not such a big deal if it is just recompile. If you already target Linux with a portable code base ( to support both ARM and amd64 for example ) then the burden of RISC-V is pretty low. Most of the support will be the same between RISC-V and ARM if they target the same Linux distros.
The Linux distros themselves are just a recompile as well and so the entire Open Source ecosystem will be available to RISC-V right away.
It is a very different world from x86 vs Itanium with amd64 added to the mix.
Look at Apple Silicon. Fedora already has a full distribution targeting Apple Silicon Macs. The biggest challenges have been drivers, not the ISA. The more complete the Linux ecosystem is on ARM, the easier it will be to create distros for RISC-V as well.
Porting Windows games to Linux is not a small step. It is massive and introduces a huge support burden. That is much different than just recompiling your already portable and already Linux hosted applications to a new arch.
With games, I actually hope the Win32 API becomes the standard on Linux as well because it is more stable and reduces the support burden on game studios. It may even be ok if they stay x86-64. Games leverage the GPU more than the CPU and so are not as greatly impacted running the CPU under emulation.