There’s been some Friday night kernel drama on the Linux kernel mailing list… Linus Torvalds has expressed regrets for merging the Bcachefs file-system and an ensuing back-and-forth between the file-system maintainer.
There’s been some Friday night kernel drama on the Linux kernel mailing list… Linus Torvalds has expressed regrets for merging the Bcachefs file-system and an ensuing back-and-forth between the file-system maintainer.
Now that’s what I call serious over-engineering.
Who in the world wants to use that?
And does that developer maybe have some spare time? /s
This is actually a feature that enterprise SAN solutions have had for a while, being able choose your level of redundancy & performance at a file level is extremely useful for minimising downtime and not replicating ephemeral data.
Most filesystem features are not for the average user who has their data replicated in a cloud service; they’re for businesses where this flexibility saves a lot of money.
I’ll also tac on that when you use cloud storage, what do you think your stuff is stored on at the end of the day? Sure as shit not Bcachefs yet, but it’s more likely than not on some netapp appliance for the same features that Bcachefs is developing.
Simple example: my Steam library could be RAID0 and unencrypted but my backups I definitely want to be RAID1 and compressed, and encrypted for security. The media library doesn’t need encryption but maybe want it in RAID1 because ripping movies takes forever. I may also want to have the games on NVMe when I play them, and stored on the HDDs when I’m not playing them, and my VMs on the SATA SSD array as a performance middleground.
Wonderful.
But these are libraries. Not single files.
Yes, which is why these settings can also be configured per-directory as well as per-file.
This probably meets some extreme corporate usecase where they are serving millions of customers.
It’s not that obscure - I had a use case a while back where I had multiple rocksdb instances running on the same machine and wanted each of them to store their WAL only on SSD storage with compression and have the main tables be stored uncompressed on an HDD array with write-through SSD cache (ideally using the same set of SSDs for cost). I eventually did it, but it required partitioning the SSDs in half, using one half for a bcache (not bcachefs) in front of the HDDs and then using the other half of the SSDs to create a compressed filesystem which I then created subdirectories on and bind mounted each into the corresponding rocksdb database.
Yes, it works, but it’s also ugly as sin and the SSD allocation between the cache and the WAL storage is also fixed (I’d like to use as much space as possible for caching). This would be just a few simple commands using bcachefs, and would also be completely transparent once configured (no messing around with dozens of fstab entries or bind mounts).
Is there a reason for bind mounting and not just configuring the db to point at a different path?
I mean… If you have a ton of raw photos in one directory, you can enable the highest compression rate with zstd to it. Every other directory has lz4 with the fastest compression. Your pics take much less space, but the directory will be slower to read and write.
My company serves millions, too. We don’t have such needs.
Congrats.